Flexible Task Graphs:

A Framework for Experimental

Real Time Programming in Java

Joshua Auerbach
IBM Research

with slides borrowed liberally from Jan Vitek (Purdue),
representing joint work with Jan, Jesper Spring (EPFL), David
Bacon (IBM), Rachid Guerraoui (EPFL) and also...

Other Contributers

Additional co-authors of precursors:

m Eventrons: Daniel Spoonhower (CMU), Perry Cheng, David Grove (IBM)
(with Bacon and Auerbach)

m Reflexes: Filip Pizlo (Purdue) (with Vitek, Spring, and Guerraout)

m Exotasks: Christoph Kirsch (U. Salzburg) (with Bacon and Auerbach)
m StreamFlex: Jean Privat (UQAM) (with Vitek. Spring, and Guerraoui)
Scheduler developers:

m Daniel Iercan (U. Timisoara) (HTL, with Kirsch)

m Jia Zou and Edward Lee (U. Cal Berkeley) (PTIDES, with Bacon and
Auerbach)

Applications:

m Rainer Trummer and Harald Roeck (U. Salzburg) and V T Rajan (IBM) (the
JAviator, with Auerbach and Bacon)

Broad Outline

Java For Real Time
*Why and who

*(General 1ssues

*RTS]J (the standard)

Flexible Task Graphs
- Conceptual Overview

- Practical Demos

Flexible Task Graphs Software

flexotask.sourceforo

Welcome to the Flexible Task Graphs web site.

Release 2.0.1 is now available. A change history is now being maintained on this site.
API classes, development

tools, debug/test,

e How to install Flexible Task Graphs. Includes the development environment, nntime APIs_ doc checker S, builders , €tcC.
real-time VM (but includes interfaces sufficient to create such a bridge or use an existing one). Op en soutrce
e How to install Flexible Task Graphs along with the IBM Flexible Task Graphs runtime provider. ’

DeveloperWorks and IBM AlphaWorks to support real-time execution in the IBM WebSphere

Afl installations are via the Eclipse Update mechanism.

Eclipse IDE for Java Developers (85 MB) Windows

The essential tools for any Java developer, including a Java IDE, a CVS client, XML Editor Mac 05 X (Carbon)
and Mylyn. More... Linux 32bit
Downloads: 821,677 Linux 64bit

Runtime bridge to a
specific Real-time JVM
(IBM’s WebSphere Real
o e Time). Binary only.

Download description

Filename File zsize Description

flexotaskGetting Started.zip S2ZKB Zip file containing installation instructions for Flexible Tazk

Flexible Task Graphs Software

m http://www.ibm.com/developerworks/java/jdk/linux/download.html

Java SE Version 6

‘ Duwnluad Plug-in Weh Start
support support

64-bit AMD/Opteron/EM&4T

32-bit wSeries (Intel compatible)

32-hit iISeries/pSeries

gd-hit iSeries/pSeries

31-hit zSeries (5/390)

.'El:rSpher'E Real Time V2.0 32-bit xSeries (Intel compatible)

IBM WebSphere Real Time itself ... free download (no support, though, support costs $$
©) ... requires a recent RT Linux kernel such as RHEL5RT

Broad Outline

%a For Real Time
*Why and who

*(General 1ssues

*RTS]J (the standard)

Flexible Task Graphs
- Conceptual Overview

- Practical Demos

What is a real-time system?

® Real-time system: a system which has to
respond to external inputs within a finite and

specified period
Y correctness includes timmeliness
Y being late is as bad as being wrong!

® Usually, an embedded system (a component of
some larger hardware structure)

® 99% of all processors are for the embedded
systems market

Kinds of Real Time Systems

m “Hard” real time — a missed deadline is equated
to program failure (airplane crashes)

m “Soft” real time — missed deadlines are bad but
the occasional outlier may be tolerated (video

olitch, dropped telephone call)
m Java is potentially usable for both

m Hard RT community may be slower to adopt

Relevance of Embedded Systems

® “[...] estimate that each individual [...] may
unknowingly use more than 100 embedded computers
daily”
“The world market for embedded software will grow
from about $1.6 billion in 2004 to $3.5 billion by 2009,
at an average annual growth rate (AAGR) ot 16%0.

“Embedded hardware growth will be at the ageregate
rate of 14.2% to reach $78.7 billion in 2009, while

embedded board revenues will increase by an aggregate
rate of 10%0”

® http://www.bccresearch.com/comm/G229R.html, http://www.ecpe.vt.edu/news/ar03/embedded.html
9

What Programming Technologists
can contribute to Real-Time

B Real time systems are getting more complex

= [ow level languages tedious

m Current RT programming models are function of

hardware + OS
= Not portable

® Only some of the code in a typical application is RT
®m Managed languages like Java and C#: safe, platform

independent, productive

= But, can they achieve RT goals?

Why do Language and Model
Matter?

® Development time, code quality and certification are

increasingly criteria. For instance in the automotive
industry:
> 90% of future innovation in the auto industry will be
driven by electronics and software — o/kswagen

80% of car electronics in the future will be software-based

— BMIWW

> 80% of our development time is spent on software —

JPL

* Worst, software 1s often the source of missed project

deadlines.

Real-time Java Challenges

m Garbage Collection
= Requires specially designed GC
® Or, an alternative memory model
m Distance from the “iron”
® Scheduling (priorities etc)
= Mapping physical memory
» Handling interrupts
m JI'T Compilation
= AOT compilation
m (lass loading

® Closed world plus init-time loading

Real-time applications

¢ Shipboard computing

> US navy Zumwalt-class Destroyer,
Raytheon / IBM
5 million lines of Java code
Real-time GC key part of system.

® Avionics
b Zedasoft’s Java flight simulator
> IBM Scaneagle UAV
> The JAviator

® Financial information systems

JAviator

*Quad-rotor model helicopter built at U. Salzburg
*Gyro, sonar, motor speed controllers
* Arms don’t tilt or move: interesting control problem
*Contains 600mhz ARM processor 128m memory, ROM disk,
*RT Linux kernel
*Runs modified version of IBM’s WebSphere Real Time VM
*Flew it using Exotasks (precursor of Flexible Task Graphs) — LCTES 2007

14

The Real Time Specification for Java

m (or RTSJ, or JSR-1)
m Implemented by (at least)

® Commercial
m [BM: WebSphere Real Time
m Sun: Java RTS
m AICAS: JamaicaVM

= Experimental
m OVM (Purdue)

RTS]J Programming Model
® Java-like:

> Shared-memory,

lock-based synchronization,

No new syntax!

P
P first class threads,
P
P

No serious consideration of multi-core

® Main real-time additions:
P Real-time threads + Real-time schedulers
> Priority avoidance protocols: PIP or PCE

> Region-based memory allocation (to avoid GC
pauses)

Books

Alan Burns and Andy Wellings ﬁ

Concurrent

Real-Time Systems ~7/1

& Programming and Real-Tl!“e
Languages | Progra mmin g

‘3& Andy Wellings

RTSJ Version 0.9 RTSJ Version 1.0.1

Overview of RTSJ Coverage

> memory management (focus)
time values and clocks (mention)

> schedulable objects and scheduling (overview)

> real-time threads (overview)

> asynchronous event handling and timers (overview)
asynchronous transfer of control (mention)
synchronization and resource sharing (mention)

P physical memory access (mention)

Quick Mention

 time values and clocks

* HighResolutionTime nanosecond granularity

* asynchronous transter of control
(termination)

° Alternative to deprecated stop() or imprecise
interrupt() concepts

* Thread enables/defers ATC (deferred by default)
* Synchronized methods defer ATC as side-effect

Quick Mention (2)

* synchronization and resource sharing

* Selectable algorithms to avoid priority inversion (ptiority
inheritance, priority ceiling emulation)

* physical memory access

* Placement of objects in parts of memory with particular
propetties

* Allow access to raw memory locations used to interface to
the outside wotld (e.g memoty-mapped 1/O)

* Access to raw memory in terms of reading and writing
primitive data types (int, long, float etc.)

Threads, Events, and Scheduling in RTS]J

m Reuse Thread construct with more precise control over
scheduling

m Standard Java has only 10 priority levels and no real
guarantees that priorities are honored

= RTSJ mandates at least 28 levels with pre-emptive discipline

®m Add asynchronous events as a distinct schedulable
object on a par with Threads

® A schedulable object (RealtimeThread or
AsyncEventHandler) implements the Schedulable
interface

Scheduling-related Classes
ProcessingGroupParameters PriorityScheduler
Mandated

1
) RealtimeSecurity

PriorityParameters

ImportanceParameters ‘ PeriodicParameters | AperiodicParameters

SporadicParameters

Real-time Threads

implement s

. v I
RealtimeThread P21

L

A

has

: ‘ &
‘ NoHeapRealtimeThread

Fol standard Java interface standard Java class

]:] RTSJ class [] RTS) abstract class or interface

Async Event related Classses
POSIXSignalHandler

associate wat

LISCS
#* *
e} " g
AIA e
.

Memory Management Issues

Two main approaches

1. Preserve Java semantics exactly, make R'T garbage
collectors with sufficiently low latency.

Introduce alternative memory model
= Still no ‘free’ operation

= Allocations go to specialized memories based on context

m Restrictions on subsets of code ensure safe behavior

m (Not seriously considered: malloc/free style memory
management)

What RTSJ Does

m Originally developed under the assumption that

RT GC was infeasible

® So, alternative memory model

m [n practice, there is usually al
the standard acknowledges t

so a RT GC and

nat.

m A given RT GC has a lower |

below which the alternatives

= Note this can vary by vendor

imit on latency,
become important

Real Time Garbage Collection

® Basically, collects concurrently or 1n tiny increments
with attention to scheduling

m (Classical solutions (e.g. Baker [CACM 1978]) are “work
based”

= A snippet of GC work for each N bytes allocated

® Good at keeping up

® [nadequate for hard real time due to clustering of pauses
B Modern variants atre

® “time based” (e.g. Metronome, adopted by IBM and OVM),
m “slack based” (e.g. Henriksson’s collector, adopted by Sun)
® or “creative hybrids” (e.g. Metronome-TS, experimental,

IBM).

Metronome

Uses Minimum Mutator Utilizattion (MMU, Cheng and
Blelloch) for scheduling

= MMU(») == minimum fraction of time available for
application use over a (sliding) time window of size w

= IBM WebSphere Real Time, MMU (10ms) = .70 by default

Oversampled so that pauses of max 500xs are spread over the
10ms window

= Avolds clustering of pausesCan still introduce jitter in RT
threads as long as MMU i1s met

m Requires highly incremental collector with bounded
termination

= built on “snapshot at the beginning” model (Yuasa)

Henriksson’s Collector

m Technique can be applied to any concurrent collector
algorithm

Scheduling is done by OS using priorities

Threads that perform collection run at lower priority
than any RT thread, higher than any ordinary thread

Adapts well to MP
Very good at avoiding jitter in RT threads

But subject to catastrophic failure if there are any
periods with insufficient slack

Metronome T'S

See EMSOFT 2008 for details

Metronome pauses all threads, global MMU

Metronome-TS schedules GC per-thread

Requires GC to be both incremental and concurrent
Different threads can have different MMUs
“Critical” threads can run with minimal GC interference

Background GC threads exploit excess CPU capacity
APP |l APP I APP
| GC |
GC |

Limits of RT GC

B Inherent

= GC work and “real” work are different, context switching
inevitable

= Quantization of GC limited by the need to get something
done in each quantum

m Concurrency only really helps when there are enough cores
m Practical

m Metronome-TS introduces jitter on the order of 250xs

® Production VMs more like 1-2ms.

Broad Outline

Java For Real Time
*Why and who

*(General 1ssues

*RTS]J (the standard)

Flexible Task Graphs
- Conceptual (unification)

~ Practical (50% of talk)

Language Restrictions + Specialized
Memory

m Hstablishes specialized memory (details vary)

® These memory areas are not subject to normal GC

m RT-sensitive code (aka special code) allocates to

specia

ized memory implicitly

® Threads running special code not preempted by GC

m Rules (details vary) ensure that references

between memory areas remain safe

Alternative Models

Sun/JCP UCB/Salzburg IBM Purdue/EPFL MIT

NHRT thr Giotto/HTLc

(RTSJ 1.0) Streamlt

> RelﬂeX 1T //
‘/

. !
Exotask ;;

|
v
StreamFlexg

Exotaslzg e

V's

Flexotask ("Flexible Task Graphs®) .
2 -

Thread
Single Task
Task Graph

RTSJ 2.0? — Codebase
» |deas

Specialized Memory in RTS]J

- RTSJ provides two alternatives to using the heap:
immortal memory and scoped memory

* Schedulable objects may enter and leave a specialized
memory area

While they are executing within that area, all memory
allocations are performed to the specialized memory

Immortal memory 1s never subject to GC

® When there are no schedulable objects active inside a
scoped memory area, the entire area is reclaimed

RTSJ Memory Architecture

C
En

EMN Inner Scope

Memory Assignment Rules

From

To Heap Memory

To Immortal
Memory

To Scoped Memory

Heap Memory

Immortal Memory

Scoped Memory

Local Variable

Note

® If the program violates the assignment rules, the
unchecked exception
IllegalAssignmentError is thrown

® Since RTS] wanted no changes to the Java language
rules are entorced o7 every assignment at run-time by the
JVM

® In practice, the overhead of the checks is 10 - 20% of
execution time 1f implemented efficiently

f(a,b)

Inner Scope Inner Scope Inner Scope

Outer Scope Outer Scope Outer Scope

[llegal AssignmentError

Non-compositional behavior. No guarantee that a program that
works for now will always work.

NoHeapRealtimeThread

® All code in the application is able to use
Immortal and Scoped memory.

® Since such code 1s also potentially using heap
memory, it can be paused by the GC.

® A no-heap real-time thread (NHRT) 1s a real-

time thread which only ever accesses non-heap
MEMmOory areas.

® Hence, 1t can safely be executed even when
GC 1s occutring

Adding the NHRT

LEGEND
Legal RTSJ Pointer

SCOPE 2 9 Legal, NHRT Inaccessible

lllegal RTSJ Pointer

IMMORTAL
MEMORY
(Includes Globals)

Attempts to do Better

Common Elements
m Restrict a reachable extent of code, not a thread.

m Use static analysis techniques
® At development (Java->bytecode) time
B or at program initialization (or both)

m Avoid dynamic checks

m A program that [compiles | initializes | won’t
eXperience an error

mtroduction to our work.

huerbach, David F. Bacon, Rachid Guerraoui, Jesper Honig Spring, and Jan Vitek, published in LCTES 2008.

; - e efle eted" w an active project with much left to accomplish. We expect to accept contributions from new authors. Qur goal is to
obtam CONSensus on the best possible restricted thread programming model to mcorporate into the next generation of standards for Real Time Java. Contributions can take the form of new plugins (timing
grammars, schedulers, distributers, or tracing packages), new front-end tools, or improvements to the framework itself.

® Dlease contact Joshua Auerbach if vou are interested in contributing to this project.
® Youmay also visit our our sourceforge project page for more information and subscribe to one or more of our mailing lists. The mailing lists are structured so that all subscribers (but only subscribers)
may send to them.

The Flexible Task Graphs open source codebase was developed at IBM (or under research agreements with IBM) starting from the older Exotasks code base. It is being made available by IBM under the
Eclipse Public License. Code was written by Joshua Auerbach and Jesper Honig Spring, with design guidance from David Bacon, Jan Vitek, and Rachid Guerraoui, and reflecting earlier design guidance on
the Exotask svstem from Christoph Kirsch. Flexible Task Graphs are a unification of four previous programming models, so the authors of those models can all be counted as having influenced the present
model. Here are pointers to the papers describing the original models that influenced this worle.

e Eventrons: a Safe Programming Construct for High-frequency Hard Real-time Applications by D. fpoonhower, J. Auerbach, D. F. Bacon, P. Cheng, and D. Grove, published in PLDI 2006.

e Java Takes Flight Time-portable Real-time Programming with Exotasks by J Auerbach, D. F. Badon, D. T. Tercan, C. M. Kirsch, V. T. Rajan, H. R. Roeck, and R. Trummer, published in LCTES
2007

o Low-Latency Time-Portable Real-Time Programming with Exotasks by J Auerbach, D. F. Bacon|D. T. Iercan, C. M. Kirsch, V. T. Rajan, H. R Roeck, and R. Trummer, published in TECS. A mo
detailed treatment of Exotasks that also described the integration with Eventrons, a precursor to this work.

o Reflexes: abstractions for highly responsive svstems by J. Spring, F. Pizlo, R. Guerraou, and J. Vitek, published in VEE 2007.

o Streamflex: hish-throughput stream programming in java by J. Spring, J. Privat, R. Guerraoui, J. Vitek, published in OOPSLA 2007

Pointers to all the papers are on our web site.

Techniques Differ

m Kind of specialized memories
= None, heap-like, immortal-like, scope-like, combinations. ..
® When restrictions enforced

= Compile time (earlier feedback)

® Program initialization (more information)

m How special code communicates with non-RT code

® [mportant since most “RT” applications are mixtures

m Other details

Single Task Models

RTSJ] NoHeapRealtimeThread

Eventron (IBM), aka Expedited Real-time Threads
Reflex (Purdue / EPFL)

Exotask (IBM)

Exotask 2 (IBM), also called Expedited Real-time Task
Graphs

StreamFlex (Purdue / EPFL)
Flexible Task Graphs (IBM, Purdue, EPFL)

Eventron

= IBM (PLDI 2006)

m Kind of specialized memories

= None! Relies entirely on pinned objects in public

heap

® Safe because the pinned objects are linked by final
references so form a permanently closed set.

B When restrictions enforced

® Program initialization. Analysis also yields the set of
objects that must be pinned.

Eventron

® How special code communicates with non-RT code

= Pinned objects non-reference fields (primitive type, including
clements of primitive arrays) are still mutable

= Hssentially unsynchronized, ameliorated by notifyIfWaiting
facility
® Other details

® Because no specialized memory, Eventron code cannot
allocate at all.

= Synchronization also forbidden

Reflex
® Purdue / EPFL (VEE 2007)

m Kind of specialized memories

m Each reflex has two: immortal-like sfzble-area, and
scope-like transient area

B When restrictions enforced

® Compile time. Dangling stable->transient pointers
eliminated by pure type-based analysis: divide into
Stable and transient classes.

Reflex

m How special code communicates with non-R'T

code

® Pre-emptive atomic regions in methods callable by
both special and non-special code: special code wins
and aborts non-special

B Other details

m Treatment of static-reachable objects reuses
Eventron insights (“reference immutable™)

= Compile-time analysis doesn’t yield “objects to be
pinned” ... relies on VM to run class initializers in
immortal

Task Graph Models

m Exotask
m [nfluenced by Giotto and HTL (UCB / Salzburg)

® Original 1dea was to achieve perfect time portability,
determinism

® Originally incompatible with Eventrons
m StreamFlex

® Built on Reflex memory model
® Influenced by StreamlIt (MIT)

Exotask 1
= IBM (LCTES 2007)

m Kind of specialized memories

® Private heap, with schednled garbage collection

B When restrictions enforced
® Program initialization
m but data-sensitive only for static-reachable fields

m Static-accessible data pinned as in Eventrons; must
be immutable, not just reference-immutable

® Synchronization on these pinned immutable objects
is no-op’d.

Exotask 1

m How special code communicates with non-R'T
code

® Doesn’tl Exploring high levels of determinism,
time portability, which requires total isolation

m Communication between nodes of the graph is

by deep clone

® Expensive but guarantees isolation

Key Exotask Ideas in Flexotask
m Pluggable schedulers. The scheduler decides

® when each task runs
® when each task is garbage—collected
B when every connection copies 1ts data

m [nstantiation from a template (XML document)

® The template 1s a declaration of the graph’s structure
® The actual task graph is instantiated by the system

m Pluggable timing grammars

® Provide the right timing semantics for a given
scheduler

® Template syntax includes timing annotations
conforming to the declared grammar

Exotask 2 (aka XRTG)

m [BM (TECS 2009)
B Unified Exotask and Eventron ideas

m “Weak isolation” option relaxes normal Exotask
restriction on static to “reference immutable,” as

in Eventron and Reflex models.

m Also permits a public-heap pinned “parameter’
to be passed to each weakly 1solated Exotask.

StreamFlex

® Purdue / EPFL (OOPSLA 2007)

B Multi-node extension of Reflex model

m Same memory model for individual Reflex node

B [n contrast to Exotask
®m Communication channel is a bounded buffer

m Pass-by-reference semantics

m Introduce a third category of classes: Stable, transient and

Capsule
m Single-reference invariant supports efficient freeing

Broad Outline

Java For Real Time
*Why and who

*(General 1ssues

*RTS]J (the standard)

‘

Flexible Task Graphs
- Conceptual Overview

- Practical Demos

T~ -
\/

Flexotask Goals

m Unify previous work (statically checkable
models).

B Provide a basis for serious standardization
discussions.

B Provide a useful framework for further

development

® Development environment based on Eclipse
m [everage Eclipse’s plugin concept

m Well-detined boundary between programming
model support and the RT VM.

Flexotask Unification

® Kind of specialized memories
m Hach Flexotask has a private heap (like Exotask)
= ...optional transient area (like Reflex)
= ...supplemented by pinned objects (like Eventron)

®m When restrictions enforced
® Bot)h at compile time (earlier feedback)

® And at program initialization (more information)

m Correctness defined by the later check, so earlier check may
be just a warning

m Stable/transient distinction as in Reflexes
m But, an “all stable” default yields Exotask-like behavior

= Optional restrictions on allocation and synchronization

Flexotask Unification

® How special code communicates with non-RT code

= Hventron-style (unsynchronized access through shared non-
reference fields).

m Reflex-style (pre-emptive atomic regions)

m Accomplished through rewriting at development time.

m Has pluggable scheduling, timing grammars, template
approach as in Exotasks.

m Task graphs as in Exotask and StreamFlex
® Deep copy option (Exotask-like)
m By-reference option for shared pinned objects (StreamFlex-
like)
= Connection buffering accomplished by making the ports at
either end buffered.

Flexotask Memory Picture

Public Hed

Flexible Task Graphs Software

flexotask.sourceforo

Welcome to the Flexible Task Graphs web site.

Release 2.0.1 is now available. A change history is now being maintained on this site.
API classes, development

tools, debug/test,

e How to install Flexible Task Graphs. Includes the development environment, nntime APIs_ doc checker S, builders , €tcC.
real-time VM (but includes interfaces sufficient to create such a bridge or use an existing one). Op en soutrce
e How to install Flexible Task Graphs along with the IBM Flexible Task Graphs runtime provider. ’

DeveloperWorks and IBM AlphaWorks to support real-time execution in the IBM WebSphere

Afl installations are via the Eclipse Update mechanism.

Eclipse IDE for Java Developers (85 MB) Windows

The essential tools for any Java developer, including a Java IDE, a CVS client, XML Editor Mac 05 X (Carbon)
and Mylyn. More... Linux 32bit
Downloads: 821,677 Linux 64bit

Runtime bridge to a
specific Real-time JVM
(IBM’s WebSphere Real
o e Time). Binary only.

Download description

Filename File zsize Description

flexotaskGetting Started.zip S2ZKB Zip file containing installation instructions for Flexible Tazk

Flexible Task Graphs Software

m http://www.ibm.com/developerworks/java/jdk/linux/download.html

Java SE Version 6

’—Dm",nad Plug-in WEh Start
support support

64-bit AMD/Opteron/EM&4T

32-bit wSeries (Intel compatible)

32-hit iISeries/pSeries

64-bit iSeries/pSeries

31-bit zSeries (5/390)

64-bit zSeries (5/390]

.'El:rSpher'E Real Time V2.0 32-bit xSeries (Intel compatible)

IBM WebSphere Real Time itself .
©) ...

.. free download (no support, though, support costs $$
requires a recent RT Linux kernel such as RHEL5RT

Flexotask Runtime Structure

Packages

com.ibm.realtime.flexotask Contains the types needed to write the Flexotasks that make up a Flexible Task Graph
com.ibm.realtime.flexotask.scheduling | Contains interfaces to be implemented by schedulers and interfaces provided to schedulers.
com.ibm.realtime.flexotask.template |Defines the Flexible Task Graph template classes and their APT

com.ibm.realtime.flexotask.timing Contains interfaces to be implemented when adding a new timing grammar to the Flexotask System
com.ibm.realtime.flexotask.tools Provides tools for converting between the XML and programmatic representation of Flexotask templates

com.ibm.realtime.flexotask.tracing Provides interfaces to be implemented when tracing (instrumenting) Flexible Task Graphs or schedulers

Common Implementation Layer
FlexotaskVMBridge: provides standard interface to VM

Utility natives for debug,
Flexotask-enabled JVM. Does 7ot have to implement RTS], 1/O, event handling

but it 1s useful in practice to leverage RTS]J building blocks.

RT-enabled Operating System (we consider only RT Linux at this point)

Preliminary (non-RT) Testing

Packages

com.ibm.realtime.flexotask Contains the types needed to write the Flexotasks that make up a Flexible Task Graph
com.ibm.realtime.flexotask.scheduling | Contains interfaces to be implemented by schedulers and interfaces provided to schedulers.
com.ibm.realtime.flexotask.template |Defines the Flexible Task Graph template classes and their APT

com.ibm.realtime.flexotask.timing Contains interfaces to be implemented when adding a new timing grammar to the Flexotask System
com.ibm.realtime.flexotask.tools Provides tools for converting between the XML and programmatic representation of Flexotask templates

com.ibm.realtime.flexotask.tracing Provides interfaces to be implemented when tracing (instrumenting) Flexible Task Graphs or schedulers
Common Implementation Layer

Any VM, on any platform, running under Eclipse or not.
Supports full API without RTguarantees.

Usage Overview

Development Time

€clipse

THE-ECLIPSE PROJECT

Java Compilation
Rewritten
Static Validation Class Files

Bytecode Rewriting

0101010

1) Dev.time code validation (on
bytecodes, not source)

2) Code rewriting enabling
transactional methods (if needed)

Runtime

Validation

Graph Construction

3) Graph construction
4) Startup-time validation

5) Execution

On Linux

m Unzip runtime
m Set FTG_HOME to point to it

m Set WRT_HOME to point to WebSphere Real
Time

m Place test.jar in a conventent place

m Run the application:
s $FTG_HOME/bin/ejava —cp test.jar test.Main

Console Output

fozadyktgzalhomes jf2 jza: $FTG_HOHE/binfejava —cp test, jar test Hain New time: L0000

200 133 188 137 196 195 134 193 132 191 130 189 o5 o4 43

Hew time: 0

133 187 186 185 184
Mew time: SO0
132 181 180 179
Mew time: 1000
178 177 176 175
Hew time: 1500
172 171 170 189
Hew time: 2000
164 163 162 151
Mew time: 2500
158 157 156 155
Mew time: 3000
153 152 151 150
Hew time: 3500
149 148 147 146
Hew time: 4000
145 144 143 142
Mew time: 4500
139 138 137

Mew time: HOO0
136 135 134 133
Hew time: GHOO
131 130 129 123
Hew time: BOOO
127 126 125 124
Mew time: BRO0
120 119 118 117
Mew time: 7000
115 114 113 112
Hew time: FHO0
111 110 199 103
Hew time: 000
105 104 103

Mew time: S5O0
102 101 100 95 98
Mew time: 9000
97 96 95 94 593
Hew time: 9500
592 91 90 83 58 87 86

182

173

167 166 1B5
159

122 121

Mew time: 10500

82 81 80 ¥3 ¥& 77

Mew time: 11000
7B 78 74 T3
Mew time: 11501
72 71 70 B9
Mew time: 12001

B3 67 B 65 B4 B3 B2

Mew time: 12501

61 B0 53 58 57 56

Mew time: 13001

5h b4 02 52 51 G0 49 48

Mew time: 13501
47 46 45 44

Mew time: 14001
Mz 42 41 40 29
Mew time: 14501
38 37 36 30 34
Mew time: 15001

2% 32 31 20 29 28

Mew time: 18501
27 26 25 24 23
Mew time: 16001
22 21 20 19 13
Mew time: 16501
17 16 15 14 13
Mew time: 17001
12 11 10 9

Mew time: 17501
BYED

Mew time: 18001
4321

Mew time: 18501
]

=il

fozasuktozashomes j 2 jzat

*General framework for tracing
*Implement FlexotaskTracerFactory — it decides which tasks and connections

shall be traced and what shall be done at each trace point.
*TuningFork tracing plugin for Flexotasks (and TuningFork itself) available from

SourceForge
*TuningFork can trace to a file or a socket.
*Custom tracers can be written to store information in memory, dump later.

TuningFork

ezt Bl Pencn_ kAl bz G o ks 58 W |E. &

(MProcess_collect Duration|

Streams
Clock_Process_run
Clock_bytesafter
Clock_bytesBefore
Clodk_collect
Clodk_run

Event Types
Exotask Instantiatior
Exotask Scheduling
Exotask Thread Crea
Exotask Validation
Process_bytesAfter
Process_bytesBefore
Process_collect
Process_run
Feader_Process_run
Feader_bytesaAfter
Reader_bytesBefore
Reader_collect e 1 “ ”

==

|

= |

Flyl=1%1%1=1-

|

|

1%1%1-

|

=g=g

|

|

==

|

Reader_run 85 1 15 2 25 3 35 4 45 5 55 B 65 7 75 & 85 4 45 10
Ready Process_collect Duration {in us) up bo 20 966'F 31

|

Developing a Scheduler

Conclusion

m http:/ /flexotask.sourceforge.net

m Use it for experimentation with
® RT applications in Java
® Scheduling algorithms

m Use it as a back end for RT modeling
m Contribute to the open source project!

m RT Java 1s real

